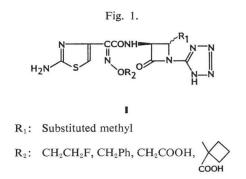
STUDIES ON MONOCYCLIC β -LACTAM ANTIBIOTICS

V. SYNTHESIS AND ANTIBACTERIAL ACTIVITY OF 3-[2-(2-AMINOTHIAZOL-4-YL)-(Z)-2-(O-SUBSTITUTED OXYIMINO)-ACETAMIDO]-1-(1H-TETRAZOL-5-YL)-2-AZETIDINONES HAVING VARIOUS FUNCTIONAL GROUPS AT C-4 POSITION OF β -LACTAM

Chosaku Yoshida*, Kiyoshi Tanaka, Rikizo Hattori, Yoshikazu Fukuoka, Miwako Komatsu, Sumiko Kishimoto and Isamu Saikawa

Research Laboratory, Toyama Chemical Co., Ltd. 2-4-1 Shimookui, Toyama 930, Japan

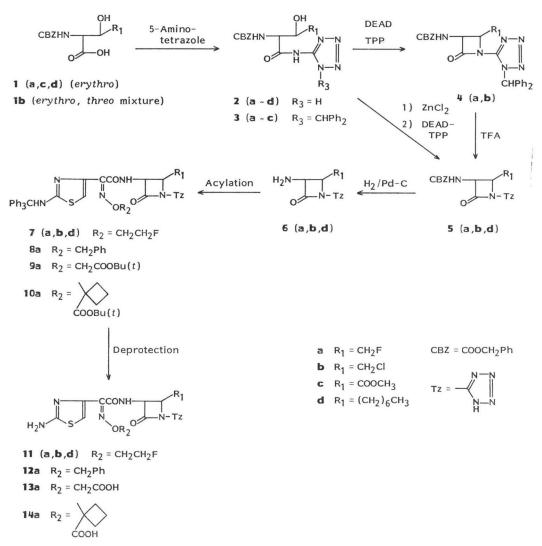

(Received for publication September 13, 1985)

The synthesis and antibacterial activity of the 3-[2-(2-aminothiazol-4-yl)-(Z)-2-(O-substituted oxyimino)acetamido]-1-(1*H*-tetrazol-5-yl)-2-azetidinones having various functional groups at C-4 position of β -lactam are described. These compounds exhibited a strong activity against a variety of Gram-negative bacteria including β -lactamase-producing strains. Among various C-4 substituents explored, the fluoromethyl and carbamoyloxymethyl moiety were found to increase the activity.

In our previous paper,¹⁾ the synthesis and antibacterial activity of (3S,4R)-3-[2-(2-aminothiazol-4-yl)-(Z)-2-(O-substituted oxyimino)acetamido]-4-methyl-1-(1H-tetrazol-5-yl)-2-azetidinones have been

reported, and especially, the compound with the 2-(2-aminothiazol-4-yl)-(Z)-2-(2-fluoroethoxyimino)acetyl moiety as the 3-acyl side chain have been found to possess preferably broad antibacterial activities. With the view of further improvement of antibacterial activity, we synthesized *N*-(tetrazol-5-yl)azetidin-2-ones (I) (Fig. 1) having various functional moieties at C-4 position.

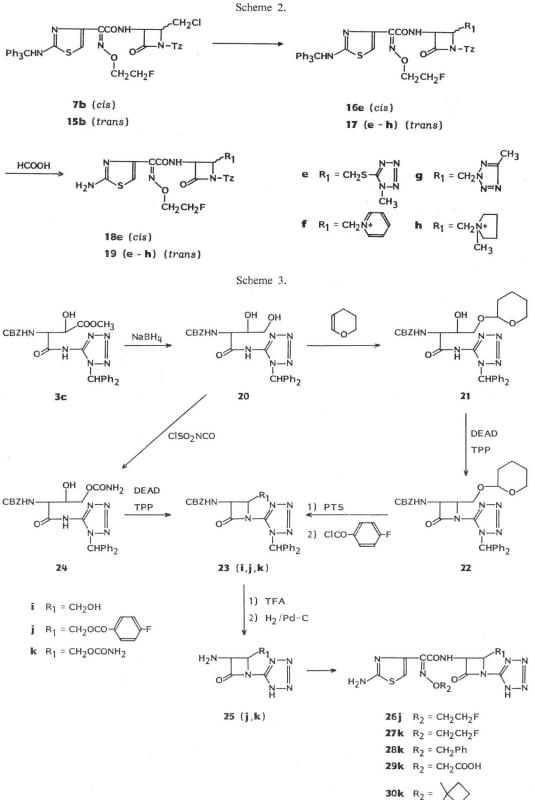
In this paper, the new derivatives represented by the general structure (I) are described.



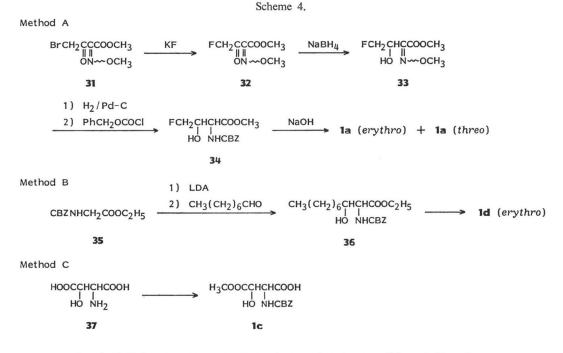
Chemistry

Various (3,4)-*cis* and *trans*-(4-substituted)azetidine-2-ones (4 and 5) were stereo selectively synthesized by using *erythro* and *threo* α -carbobenzoxy- β -hydroxyamino acids (1) as starting materials. The synthetic routes are described in Schemes $1 \sim 4$.

 β -Hydroxyamino acid of *erythro* forms (1) were condensed with 5-aminotetrazole mixed anhydride method¹⁾ to afford β -hydroxybutyramides (2), and then N-1 position of tetrazole ring were protected with diphenyldiazomethane (DDM) to obtain *N*-protected amides (3). Compounds 3 were subjected to previously reported MITSUNOBU reaction,²⁾ *i.e.* intramolecular ring closure, to obtain *N*-(tetrazol-5-yl)azetidin-2-ones (4) without difficulty (36~65%). Subsequently, the diphenylmethyl and carbobenzoxy groups were removed with trifluoroacetic acid (TFA) and by hydrogenolysis, respectively, to


obtain 3-amino- β -lactams (6). Then, 6 were condensed with 2-(2-triphenylmethylaminothiazol-4-yl)-(Z)-2-(O-substituted oxyimino)acetic acid in the presence of 1-hydroxybenzotriazole (HOBT) and N,N'-dicyclohexylcarbodiimide (DCC) to obtain 3-acylated derivatives (7~10). Subsequently, the triphenylmethyl group was removed with 50% formic acid (HCOOH) to obtain 4-substituted derivatives (11~14). The 3,4-*trans* isomers of 11a and 11b were similarly obtained from the corresponding *threo-* β -hydroxyamino acids.

On the other hand, β -hydroxybutyramide (2d) was reacted with zinc chloride (ZnCl₂) to obtain zinc salt (R₃=1/2 Zn), which was transformed into β -lactam (5d) in a similar manner by MITSUNOBU reaction.


4-Chloromethyl derivatives (7b and 15b) were reacted with various nucleophilic reagents (5-mercaptotetrazole, pyridine, 5-methyltetrazole and *N*-methylpyrolidine) to obtain 3,4-*cis* and *trans* compounds (16e and 17e~h) having various heterocyclic groups at C-4 position. Then, triphenylmethyl group

ćоон

THE JOURNAL OF ANTIBIOTICS

was removed with 50% formic acid to obtain 4-substituted derivatives (18e and $19e \sim h$).

On the other hand, (3,4-cis)-4-acyloxymethyl derivatives (26j and 30k) were synthesized by the route shown in Scheme 3. Thus, hydroxymethyl derivative (20) was produced by reducing methoxy-carbonyl group of 3c with sodium borohydride (NaBH₄) (70%). The hydroxymethyl group of 20 was protected selectively with dihydropyran to obtain tetrahydropyranyl derivative (21), followed by cyclization in a similar manner as described in Scheme 1. Subsequently, pyranyl group was removed by *p*-toluenesulfonic acid (PTS) in aqueous methanol to obtain 4-hydroxymethyl- β -lactam (23i), and it was acylated with *p*-fluorobenzoyl chloride to obtain 23j. On the other hand, carbamoyloxy derivative (24) was prepared by treating 20 with chlorosulfonyl isocyanate (65%). Compound 24 was converted into the 4-carbamoyloxymethyl- β -lactam (23k). After which, 26j~30k were obtained in a similar manner to that described for the synthesis of 4-fluoromethyl derivatives (11~14). The structure of *N*-(tetrazol-5-yl)azetidin-2-ones were confirmed by IR and NMR.

 β -Hydroxyamino acid derivatives (1d ~ f), being important starting materials in Scheme 1, were synthesized by three different routes shown in Scheme 4.

 γ -Fluoro- β -hydroxyamino acids (1a) were prepared from methyl 4-bromo-2-methoxyimino-3oxobutyrates (31)³⁾ in the following process. Compound 31 was treated with potassium fluoride in the presence of 18-crown-6 to obtain γ -fluoro derivatives (32). And then, the β -carbonyl group of 32 was reduced with sodium hydride to afford β -hydroxyl derivatives (33), and the α -methoxyimino group of compound 33 was subjected to hydrogenolysis to obtain α -amino compounds. Then, after the amino group was protected with carbobenzoxy chloride (CBZ-Cl), the ester group of 34 was hydrolyzed with sodium hydroxide to obtain an epimeric mixture of 1a. The mixture was fractionally recrystallized to obtain 1a (*erythro* form) (50.5%) and its *threo* form (33.3%), separately. γ -Chloro- β -hydroxyamino acids (1b) were prepared from 4-chloro-2-methoxyimino-3-oxobutyrate by the method described above. However, 1b (*erythro* and *threo* mixture) could not be fractionated, so that, the mixture was converted into 4b, which were fractionally chromatographed on silica gel to obtain 3,4-cis- β -lactam (4b) and its *trans* isomer. (Method A)

N-Carbobenzoxyglycine ethyl ester (**35**) was reacted with lithium diisopropylamine and octyl aldehyde to obtain β -hydroxyamino acid (**36**), and it was treated in a similar way as that for **1b** to obtain **1d** (*erythro*, 78 %).⁴⁾ (Method B)

4-Methoxycarbonyl derivative (1c) was prepared from (erythro)-N-carbobenzoxy- β -hydroxy-DLaspartic acid (37) by the synthetic method elaborately established by IZUMIYA *et al.*^{5~7} (Method C)

Antibacterial Activity and Conclusion

The minimum inhibitory concentration (MIC) of *N*-(tetrazol-5-yl)azetidin-2-ones (I) against several Gram-positive and Gram-negative bacteria are shown in Tables 1 and 2. Aztreonam⁸⁾ was used as reference compound. The previous report¹⁾ has shown that the compound with 2-(2-aminothiazol-4-yl)-(Z)-2-(2-fluoroethoxyimino)acetamido group as an acyl moiety had broader activity than the corresponding compound with methoxyimino group in an acyl moiety. Hence, in this study, while the acyl moiety being fixed, the structure-activity relationships of β -lactams having various functional groups at C-4 position were studied, and the results are shown in Table 1.

11a and 27k showed strong antibacterial activity against Gram-negative bacteria other than *Pseudomonas aeruginosa*. Among them, 4-fluoromethyl derivative (11a) showed the best result, followed by 4-carbamoyloxymethyl derivative (27k). As the lipophilicity and bulkiness of substituents at C-4 position increased, the compound showed less activity against Gram-negative bacteria. When 11a and 11b were compared in terms of configuration and antibacterial activity, there were no remarkable difference in activity. In case of derivatives having bulky substituents (18e and 19e), *trans* form (19e) showed stronger activity. However, against Gram-positive bacteria, only 26j showed relatively strong activity against *Staphylococcus epidermidis* (0.2 μ g/ml) and against *S. aureus* (12.5 μ g/ml), indicating insufficient activity. As described above, it was difficult to develop a compound

Com- pound No.	3,4-Con- figuration	<i>S.e.</i> ^a IID 866	<i>S.a.</i> * F-137	<i>E.c.</i> NIHJ JC-2	<i>K.p.</i> Y-50	<i>En.c.</i> IID 977	<i>S.m.</i> IID 620	<i>P.m.</i> T-111
**	3S, 4R (methy	1) 3.13	50	0.2	0.2	0.78	0.39	0.39
11a	cis	6.25	25	≤ 0.1	≤ 0.1	0.39	0.39	0.2
trans Iso	omer of 11a	12.5	50	0.2	≤ 0.1	0.39	0.2	0.39
11b	cis	25	200	0.2	0.39	1.56	0.78	3.13
trans Isc	omer of 11b	12.5	50	0.78	0.39	0.2	0.39	0.78
11d	cis	50	> 200	6.25	12.5	25	100	12.5
26j	cis	0.2	12.5	0.78	0.78	3.13	3.13	1.56
27k	cis	200	> 200	0.2	≤ 0.1	0.39	0.39	0.39
18e	cis	50	> 200	6.25	6.25	3.13	12.5	12.5
19e	trans	6.25	50	0.39	0.2	0.2	0.39	0.78
19f	trans	6.25	100	0.78	0.78	0.78	1.56	0.78
19g	trans	12.5	200	1.56	0.39	0.39	1.56	3.13
19h	trans	25	> 200	6.25	6.25	6.25	6.25	25
Aztreon	am	>200	>200	0.2	≤ 0.1	3.13	≤ 0.1	≤ 0.1

Table 1. Effect of 4-substituent on antibacterial activity (MIC µg/ml) of N-(tetrazol-5-yl)azetidin-2-ones.

^a Organisms included in the Table are: *S.e., Staphylococcus epidermidis; S.a., Staphylococcus aureus; E.c., Escherichia coli; K.p., Klebsiella pneumoniae; En.c., Enterobacter cloacae; S.m., Serratia marcescens; P.m., Proteus mirabilis.*

*: Penicillinase producing strain. **: This compound was reported in our previous paper.¹⁾

Organisms ^a	12a	28k	13a	29k	14a	30k	Aztreonam
S.a. FDA 209P	3.13	50	>200	>200	200	>200	>200
S.e. IID 866	0.78	25	> 200	> 200	50	> 200	> 200
E.c. NIHJ JC-2	1.56	1.56	0.39	0.78	0.39	1.56	0.2
K.p. Y-50	3.13	3.13	0.39	0.2	0.39	0.78	≤ 0.1
En.c. IID 977	3.13	12.5	0.39	0.39	0.39	0.39	3.13
S.m. IID 620	12.5	25	0.2	≤ 0.1	≤ 0.1	≤ 0.1	≤ 0.1
<i>P.m.</i> T-111	12.5	6.25	0.1	≤ 0.1	≤ 0.1	≤ 0.1	≤ 0.1
P.a. IFO 3445	> 200	>200	200	25	6.25	12.5	3.13
S.a. F-137*	3.13	100	200	> 200	> 200	> 200	> 200
E.c. TK-3*	3.13	6.25	≤ 0.1	0.2	≤ 0.1	0.39	≤ 0.1
E.c. GN 5482**	1.56	1.56	3.13	0.78	0.39	0.78	6.25
K.p. Y-4*	12.5	25	0.2	0.2	0.39	0.78	≤ 0.1
P.v. GN 76**	1.56	1.56	0.2	0.2	≤ 0.1	≤ 0.1	≤ 0.1
S.m. W-8**	1.56	3.13	0.78	0.78	0.39	0.39	6.25
<i>P.a.</i> GN 918**	50	50	100	12.5	0.78	1.56	12.5

Table 2. Effect of the oxime-substituent (R_2) on antibacterial activity (MIC μ g/ml) of 3-(\pm)*cis* N-(tetrazol-5-yl)azetidin-2-ones.

^a Organisms included in the Table are: S.a., Staphylococcus aureus; S.e., Staphylococcus epidermidis; E.c., Escherichia coli; K.p., Klebsiella pneumoniae; En.c., Enterobacter cloacae; S.m., Serratia marcescens; P.m., Proteus mirabilis; P.a., Pseudomonas aeruginosa; P.v., Proteus vulgaris.

*: Penicillinase producing strain. **: Cephalosporinase producing strain.

showing activity against not only Gram-negative bacteria but also against Gram-positive bacteria despite of the introduction of lipophilic and polar group at C-4 position.

The 4-fluoromethyl and 4-carbamoyloxymethyl derivatives showing excellent antibacterial activity against Gram-negative bacteria were selected for replacement of their oxyimino groups with various substituted oxyimino groups known in the cephem literature. The results are shown in Table 2.

12a showed well-balanced but insufficient activity against Gram-positive and Gram-negative bacteria. As expected, 14a showed excellent activity against not only Gram-negative bacteria including *P. aeruginosa* but also β -lactamase-producting bacteria, which exceeded that of aztreonam.

Despite the effort to introduce various functional groups at the C-4 position, we failed to find a compound having sufficient activity against Gram-positive bacteria as well as Gram-negative bacteria.

As discussed above, however, this extensive study led us to find a compound exceeding aztreonam in activity. Therefore, further study remains for further *in vitro* and *in vivo* evaluation of the compound.

Experimental

Melting points are uncorrected. IR spectra were recorded on a Hitachi model 260-30 spectrophotometer. NMR spectra were recorded on a Hitachi R-24 (60 MHz) spectrometer using TMS as an internal standard. Organic solvents were dried over anhydrous $MgSO_4$, and all concentration and evaporation of solvent were carried out under reduced pressure. Column chromatography was carried out on Wako silica gel (C-200).

In Vitro Antibacterial Activity

Minimum inhibition concentrations (MICs) were determined by the agar dilution method using heart infusion agar (Eiken) after incubation for 20 hours at 37°C and an inoculum size of about 10⁴ cfu.

General Procedure (I) of DL-erythro-2-Benzyloxycarbonylamino-N-(1H-tetrazol-5-yl)butyramide (2a, c and 2d) and erythro-threo Mixture (2b)

To a solution of 2-benzyloxycarbonylamino-4-substituted-3-hydroxybutyric acid $(1a \sim d)$ (22 mmol) in CH₂Cl₂ (60 ml) was added *N*-methylmorpholine (23.5 mmol) under ice-cooling. A solution of ClCOOEt (23 mmol) in CH₂Cl₂ (5 ml) was added dropwise to the resulting solution at $-30 \sim -20^{\circ}$ C over $10 \sim 15$ minutes, and stirred at $-20 \sim -15^{\circ}$ C for 1 hour. 5-Aminotetrazole monohydrate (26.6 mmol) in DMF (60 ml) was added dropwise to the resulting mixture at $-25 \sim -20^{\circ}$ C over 10 minutes, and stirred at $-10 \sim 0^{\circ}$ C for 1 hour, $0 \sim 10^{\circ}$ C for 1 hour and more over 20° C for 30 minutes. H₂O (30 ml) and EtOAc (60 ml) were added to the reaction mixture, and adjusted to pH 7.0 with saturated NaHCO₃ solution. The separated aqueous layer was washed with Et₂O (30 ml), and adjusted to pH 2.0 with 6 N HCl. The resulting crystals were collected by filtration and washed with H₂O to afford $2a \sim d$ in $70 \sim 80\%$. The physical properties of $2a \sim d$ are summarized in Table 3.

General Procedure (II) for the Protection of $2a \sim c$

To a solution of $2\mathbf{a} \sim \mathbf{c}$ (16.3 mmol) in MeOH (50 ml) and THF (50 ml) was added DDM (25 ml, 28.7 mmol) (20% w/v in EtOAc solution) at room temp, and stirred for 24 hours. The reaction mixture was evaporated and the residue was dissolved in EtOAc (100 ml) and H₂O (50 ml), and adjusted to pH 7.0 with saturated NaHCO₃ solution. The organic layer was washed successively with H₂O and brine, dried, and evaporated to give a residue, which was purified by column chromatography (toluene - EtOAc, 5: 1) to afford $3\mathbf{a} \sim \mathbf{c}$ as an amorphous powder in $80 \sim 90\%$ yield. The physical properties of $3\mathbf{a} \sim \mathbf{c}$ are summarized in Table 3.

Com- pound No.	Configuration	MP (°C)	¹ H NMR (Solvent) δ (J=Hz)	$\frac{\text{IR }\nu_{C=0}^{\text{KBr}}}{(\text{cm}^{-1})}$
2a	erythro	196~198 (dec)	(DMSO- <i>d</i> ₈); 3.67~4.80 (5H, m), 5.05 (2H, s), 6.97 (1H, d, 8), 7.34 (5H, s), 12.00 (1H, br s)	1720, 1685
threo	Isomer of 2a	208~211 (dec)	(DMSO- <i>d</i> ₆); 3.80~4.95 (5H, m), 5.06 (2H, s), 5.60 (1H, br s), 7.35 (6H, m), 12.20 (1H, br s)	1720, 1690
2b	<i>erythro-threo</i> Mixture	195~197 (dec)	(DMSO- d_{θ}); 3.70 (2H, d, 6), 4.12~4.47 (2H, m), 4.65 (1H, m), 5.14 (2H, s), 5.75 (1H, br s), 7.25~7.42 (6H, m), 12.20 (1H, br s)	1710, 1690, 1660
2c	erythro	190~194 (dec)	(DMSO- d_{θ}); 3.62 (3H, s), 4.07~4.86 (3H, m), 4.03 (2H, s), 6.20 (1H, br s), 7.24 (5H, s), 7.72 (1H, d, 9), 12.22 (1H, br s)	1740, 1710, 1690
2d	erythro	185~190	$(DMSO-d_{e}); 0.78 \sim 1.58 (15H, m), 3.70 \sim 4.49 (3H, m), 5.09 (2H, s), 7.00 (1H, br s), 7.36 (5H, s), 7.71 (1H, d, 8), 12.15 (1H, br s)$	1720, 1685
3a	erythro	Amorphous	(CDCl ₃); 3.77~4.80 (5H, m), 4.91 (2H, s), 6.26 (1H, d, 9), 6.88 (1H, s), 7.18 (15H, m), 10.36 (1H, br s)	1720, 1700
threo	Isomer of 3a	Amorphous	(CDCl ₃); 3.76~4.86 (5H, m), 4.95 (2H, s), 6.26 (1H, d, 7), 6.94 (1H, s), 7.25 (15H, m), 10.25 (1H, br s)	1720, 1700
3b	<i>erythro-threo</i> Mixture	Amorphous	(CDCl ₃); 3.44 (2H, d, 6), 4.11~4.70 (3H, m), 4.92 (2H, s), 6.35 (1H, d, 8), 6.84 (1H, s), 7.12 (15H, m), 10.40 (1H, br s)	1720, 1700
3c	erythro	Amorphous	(CDCl ₃); 3.50 (3H, s), 4.42 (2H, m), 4.90 (3H, m), 6.40 (1H, d, 9), 6.82 (1H, s), 7.16 (15H, m), 10.29 (1H, br s)	1740, 1720, 1705

Table 3. Spectral and physical properties of compounds 2 and 3.

(4a) <u>cis-3-Benzyloxycarbonylamino-1-(1-diphenylmethyl-1*H*-tetrazol-5-yl)-4-fluoromethyl-2-azetidinone</u>

To a solution of **3a** (5 g, 9.9 mmol) in THF (200 ml) was added diethyl azodicarboxylate (DEAD) (3.9 ml, 24.8 mmol) at -20° C. A solution of triphenylphosphine (TPP) (6.5 g, 24.8 mmol) in THF (50 ml) was added to the mixture over 10 minutes at $0 \sim 10^{\circ}$ C, and stirred at the room temp for 3 hours. The reaction mixture was evaporated to give a residue, which was purified by column chromatography (benzene - EtOAc, 50: 1) to afford **4a** (2.6 g, 53.9%) as colorless crystals. MP 162~163°C; IR (KBr) $\nu_{c=0}$ 1790, 1730 cm⁻¹; NMR (CDCl₃) δ 4.23 (1H, m), 4.65~4.90 (1H, m), 5.07 (2H, s), 5.48 (2H, m), 7.20 (16H, m), 7.60 (1H, s).

Preparation of trans Isomer of 4a

To a solution of *threo* isomer of **3a** (2 g, 3.96 mmol) and TPP (2.08 g, 7.9 mmol) in DMF (40 ml) was added dropwise a solution of DEAD (1.25 ml, 7.94 mmol) in DMF (10 ml) over 15 minutes at room temp, and stirred for 3 hours at the same temp. The resulting mixture was treated by a method similar to that described above. Yield 36.3%. An amorphous powder; IR (KBr) $\nu_{c=0}$ 1785, 1720 cm⁻¹; NMR (CDCl₃) δ 4.03~4.50 (2H, m), 4.61~5.20 (4H, m), 6.06 (1H, d, *J*=8.0 Hz), 7.26 (15H, m), 7.60 (1H, s).

Preparation of 4b and Its trans Isomer

To a solution of **3b** (16 g, 30.7 mmol) and triphenyl phosphite (28.6 g, 92 mmol) in DMF (150 ml) was added DEAD (6.3 ml, 40 mmol) at room temp, and stirred for 4 hours at $40 \sim 50^{\circ}$ C. The reaction mixture was evaporated to give a residue, which was purified by column chromatography (benzene - EtOAc, 50: 1) to afford **4b** (1.0 g, 6.5%) and its *trans* isomer (9.0 g, 58.3%).

4b: MP 163~165°C; IR (KBr) $\nu_{c=0}$ 1790, 1725 cm⁻¹; NMR (CDCl₃) δ 3.87 (2H, d, J=6.0 Hz), 4.63 (1H, m), 5.08 (2H, s), 5.34 (1H, m), 7.28 (15H, m), 7.52 (1H, s), 7.87 (1H, d, J=9.0 Hz).

Anal Calcd for C₂₆H₂₃ClN₆O₃: C 62.09, H 4.61, N 16.71.

Found: C 62.21, H 4.52, N 16.75.

trans Isomer of **4b**: An amorphous powder; IR (KBr) $\nu_{c=0}$ 1785, 1715 cm⁻¹; NMR (CDCl₃) δ 3.82 (2H, m), 4.50~4.79 (2H, m), 5.00 (2H, s), 6.02 (1H, d, J=8.0 Hz), 7.20 (15H, s), 7.55 (1H, s).

Anal Calcd for $C_{26}H_{23}CIN_6O_3$:C 62.09, H 4.61, N 16.71.Found:C 61.82, H 4.65, N 16.65.

General Procedure (III) for Deprotection of *cis*-3-Benzyloxycarbonylamino-1-(1*H*-tetrazol-5-yl)-2-azetidinone (**5a** and **5b**) and Its *trans* Isomers

To a solution of 4 (3.3 mmol) in anisole (15 ml) was added TFA (45 ml) under ice-cooling, and stirred at room temp for 30 minutes. The solvent was evaporated to afford a residue, which was suspended in a mixture of Et_2O (20 ml) and H_2O (20 ml), and adjusted to pH 7.0 with saturated NaHCO₃ solution. The separated aqueous layer was adjusted to pH 2.0 with 2 N HCl, extracted with EtOAc, washed successively with H_2O and brine, dried, and evaporated to give a residue, which was triturated with diisopropyl ether to afford 5 as a white powder in $85 \sim 90\%$.

5a: MP 157~158°C; IR (THF) $\nu_{c=0}$ 1790, 1725 cm⁻¹; NMR (DMSO- d_0) δ 4.42~4.72 (2H, m), 5.31~5.62 (4H, m), 7.38 (5H, s), 8.29 (1H, d, J=9.0 Hz), 12.00 (1H, br s).

Anal Calcd for $C_{13}H_{13}FN_{6}O_{3}$: C 48.75, H 4.09, N 26.24.

Found: C 48.61, H 4.13, N 26.31.

trans Isomer of **5a**: An amorphous powder; IR (KBr) $\nu_{c=0}$ 1790, 1725 cm⁻¹; NMR (DMSO- d_e) δ 4.35 ~ 4.66 (2H, m), 4.76 ~ 5.43 (4H, m), 7.33 (5H, s), 8.16 (1H, d, J=8.0 Hz), 10.23 (1H, br s).

Anal Calcd for $C_{13}H_{13}FN_6O_3$:C 48.75, H 4.09, N 26.24.Found:C 48.69, H 4.21, N 26.40.

5b: MP 96~99°C; IR (KBr) $\nu_{c=0}$ 1780, 1705 cm⁻¹; NMR (CDCl₃) δ 3.95 (2H, d, J=6.0 Hz), 4.65 (1H, m), 5.05 (2H, s), 5.43 (1H, dd, J=5.0 Hz, 9.0 Hz), 6.35 (1H, d, J=9.0 Hz), 7.23 (5H, s), 11.97 (1H, br s).

Anal Calcd for C₁₃H₁₃ClN₆O₃: C 46.37, H 3.89, N 24.96. Found: C 46.10, H 3.62, N 25.17.

trans Isomer of **5b**: An amorphous powder; IR (KBr) $\nu_{c=0}$ 1780, 1705 cm⁻¹; NMR (CDCl₃)

 δ 4.03 ~ 4.22 (2H, m), 4.66 (1H, m), 4.90 (1H, m), 5.07 (2H, s), 7.26 ~ 7.47 (6H, m), 12.60 (1H, br s).

Anal Calcd for $C_{13}H_{13}ClN_6O_3$: C 46.37, H 3.89, N 24.96.

Found: C 46.22, H 3.86, N 24.91.

cis-3-Benzyloxycarbonylamino-4-heptyl-1-(1H-tetrazol-5-yl)-2-azetidinone (5d)

To a solution of 2d (9 g, 22.3 mmol) in H₂O (200 ml) and NaHCO₃ (1.87 g, 22.3 mmol) was added ZnCl₂ (1.8 g, 13.4 mmol), and then saturated with NaCl. The resulting mixture was extracted with THF (200 ml), washed with brine, dried, and evaporated to give a residue, which was dissolved in THF (300 ml) and added DEAD (4.5 ml, 29 mmol). A solution of TPP (7.6 g, 29 mmol) in THF (50 ml) was added to the mixture over 30 minutes at $10 \sim 15^{\circ}$ C, and stirred for 30 minutes at $15 \sim 20^{\circ}$ C. The resulting mixture was poured into H₂O (200 ml) and EtOAc (100 ml), and adjusted pH 2.5 with 6 N HCl. The separated organic layer was washed successively with H₂O and brine, dried, and evaporated to give a residue, which was purified by column chromatography (CHCl₃ - acetone, 30: 1) to afford 5d (2.0 g, 23.3 %) as an amorphous powder. IR (KBr) $\nu_{c=0}$ 1780, 1715 cm⁻¹; NMR (DMSO- d_{θ}) δ 0.75 \sim 2.17 (15H, m), 4.34 (1H, m), 5.13 (2H, s), 5.32 (1H, dd, J=6.0 Hz, 8.0 Hz), 6.99 (1H, br s), 7.37 (5H, s), 8.37 (1H, d, J=8.0 Hz).

Anal Calcd for C₁₀H₂₆N₆O₃: C 59.05, H 6.78, N 21.75. Found: C 59.26, H 6.76, N 21.75.

General Procedure (IV) of 3-Amino-1-(1*H*-tetrazol-5-yl)-2-azetidinone (6)

Compounds 5 (3.1 mmol) were hydrogenated in MeOH (190 ml) for 4 hours over 5% Pd-C (0.3 g) at room temp under a hydrogen atmosphere. The insolubles were filtrated and added to a solution of NaHCO₃ (0.27 g, 3.2 mmol) in H₂O (2 ml), and stirred for 30 minutes. The insolubles were filtered off and the filtrate adjusted to pH 3.0 with $6 \times$ HCl. The resulting crystals were collected by filtration to afford 6 in 75~85%. The physical properties of 6 are summarized in Table 4.

trans-3-Amino-4-fluoromethyl-1-(1H-tetrazol-5-yl)-2-azetidinone (trans Isomer of 6a)

The *trans* isomer of **5a** (0.5 g, 1.56 mmol) was hydrogenated in MeOH (10 ml) for 6 hours over 5% Pd-C (0.2 g) at room temp under a hydrogen atmosphere. The catalyst was filtered off. The filtrate was evaporated to give a residue, which was triturated with EtOH to afford the *trans* isomer of **6a** (0.25 g, 86%). The physical properties are summarized in Table 4.

Com- pound No.	3,4-Con- figuration	MP (°C, dec)	¹ H NMR (Solvent) δ (J=Hz)	$\frac{\text{IR }\nu_{C=0}^{\text{KBr}}}{(\text{cm}^{-1})}$
6a	cis	197~198	(DMSO- d_6 +DCl); 4.58~5.07 (3H, m), 5.58 (3H, m)	1775
<i>trans</i> Is	omer of 6a	161~163	$(DMSO-d_6)$; 4.11~4.93 (3H, m), 5.33 (1H, m), 8.50 (2H, br s)	1770
6b	cis	195~197	$(DMSO-d_{\theta})$; 4.15 (2H, d, 6), 4.51 (1H, m), 4.78 (1H, d, 5), 5.80 (3H, m)	1750
trans Is	omer of 6b	160~163	(DMSO- <i>d</i> ₆); 3.93~4.35 (2H, m), 4.50 (2H, m), 6.00 (2H, br s)	1765
6d	cis	126~131	(DMSO- <i>d</i> ₆); 0.75~2.25 (15H, m), 4.27 (1H, m), 4.73 (1H, d, 6), 6.67 (3H, br s)	1760
25j	cis	169~173	$(DMSO-d_6)$; 4.45~4.93 (4H, m), 6.22 (3H, br s), 7.13~7.42 (2H, m), 7.83~8.11 (2H, m)	1770, 1725
25k	cis	$196 \sim 201$	(CF ₃ COOD); $4.59 \sim 5.50$ (3H, m), 5.59 (1H, d, 5)	1780, 1710

Table 4. Spectral and physical properties of compounds 6 and 25.

<u>General Procedure (V) of 3-[2-(2-Aminothiazol-4-yl)-(Z)-2-(O-substituted Oxyimino)acetamido]-4-</u> substituted Methyl-1-(1*H*-tetrazol-5-yl)-2-azetidinones ($11 \sim 14$)

i) Acylation of 3-Amino-1-(1*H*-tetrazol-5-yl)-2-azetidinones: To a solution of 6 (1 mmol) in DMF (5 ml) and Et_8N (1 mmol) were added successively 1-hydroxybenzotriazole hydrate (1.1 mmol), Molecular Sieves 4A (1 g), DCC (1.2 mmol) and (*Z*)-2-(*O*-substituted oxyimino)-2-(2-triphenylmethyl-aminothiazol-4-yl)acetic acid (1 mmol) at room temp, and stirred for 5 hours. The insolubles were filtered off and the filtrate poured into EtOAc (20 ml) and H₂O (30 ml), and adjusted to pH 2.5 with 2 N HCl. The separated organic layer was washed successively with H₂O and brine, dried, and evaporated to give a residue, which was purified by column chromatography (benzene - EtOAc, 8: 1) to afford $7 \sim 10$ in $70 \sim 85\%$, which were used in subsequently steps.

ii) Removal of the Triphenylmethyl Group with Formic Acid: The above compounds $(7 \sim 10)$ (0.7~0.8 mmol) were dissolved in THF (3 ml) and 50% aq HCOOH (15 ml) and kept at 40~50°C for 1 hour. The solvent was evaporated to give a residue, which was dissolved in EtOAc (10 ml) and H₂O (5 ml), and adjusted to pH 7.0 with saturated NaHCO₃ solution. The separated aqueous layer was adjusted to pH 2.5 with 2 N HCl, extracted twice with EtOAc (10 ml), washed with brine, dried, and evaporated to give a residue, which was triturated with a mixture of EtOAc (1 ml) and isopropyl ether (5 ml) to afford 11, 12 and *tert*-butyl ester (9a and 10a) in 85~90%.

iii) Removal of the *tert*-Butyl Ester Group with TFA: The above *tert*-butyl ester (9a and 10a) (0.5~0.6 mmol) were dissolved in CH_2Cl_2 (14 ml), and added TFA (14 ml) under ice-cooling, and stirred at room temp for 1 hour. The solvent was evaporated to give a residue, which was dissolved in EtOAc (5 ml) and H₂O (5 ml), and adjusted to pH 7.0 with saturated NaHCO₃ solution. The separated aqueous layer was adjusted to pH 2.0 with 2 N HCl, saturated with NaCl, extracted five times with EtOAc (10 ml), washed with brine, dried, and evaporated to give a residue, which was triturated with a mixture of EtOAc (10 ml) and Et₂O (10 ml) to afford 13 and 14 in 70~75%. The physical properties of 11~14 are summarized in Table 5.

cis-3-[(*Z*)-2-(2-Fluoroethoxyimino)-2-(2-triphenylmethylaminothiazol-4-yl)acetamido]-4-(1-methyl-tetrazol-5-yl)thiomethyl-1-(1*H*-tetrazol-5-yl)-2-azetidinone (**16e**) and *trans* Isomer of **17e**

To a solution of **7b** (0.4 g, 0.62 mmol) in DMF (5 ml) were added 5-mercapto-1-methyltetrazole sodium salt dihydrate (0.42 g, 2.4 mmol) and Molecular Sieves 4A (2 g), and stirred for 7 hours at $50 \sim 60^{\circ}$ C. The resulting mixture was poured into EtOAc (30 ml) and H₂O (20 ml), and adjusted to pH 2.0 with 2 N HCl. The separated organic layer was washed successively with H₂O and brine, dried, and evaporated to give a residue, which was purified by column chromatography (toluene - EtOAc, 1: 1) to afford **16e** (0.24 g, 54.8%) as a white powder. MP 160°C (dec); IR (KBr) $\nu_{c=0}$ 1785, 1670 cm⁻¹; NMR (CDCl₃) δ 3.58 ~ 4.29 (7H, m), 4.48 ~ 5.08 (3H, m), 5.49 (1H, dd, *J*=6.0 Hz, 8.0 Hz), 6.88 (1H, s), 7.24 (15H, s), 7.45 ~ 7.65 (2H, m), 8.59 (1H, br s). Compound **17e** was prepared from **15b** by a method similar to that above described.

17e: Yield 28.6%. MP 145~150°C (dec); IR (KBr) $\nu_{c=0}$ 1780 1670 cm⁻¹; NMR (DMSO- d_6) δ 3.65~4.23 (7H, m), 4.36~4.86 (2H, m), 4.93~5.36 (4H, m), 6.64 (1H, s), 7.26 (15H, s), 9.33 (1H, d, J=8.0 Hz).

 $\frac{5-\{trans-3-[(Z)-2-(2-Fluoroethoxyimino)-2-(2-triphenylmethylaminothiazol-4-yl)acetamido]-4-(1-yl)acetami$

To a solution of **15b** (1.15 g, 1.74 mmol) in pyridine (20 ml) was added sodium iodide (0.35 g, 2.33 mmol), and stirred for 20 hours at 70~80°C. The resulting mixture was evaporated to give a residue, which was dissolved in EtOAc (30 ml) and H₂O (20 ml). The organic layer was washed successively with H₂O and brine, dried, and evaporated to give a residue, which was purified by column chromatography (CHCl₃ - MeOH, 5: 1) to afford **17f** (0.1 g, 8.2%) as a white powder. MP 165~ 170°C (dec); IR (KBr) $\nu_{c=0}$ 1775, 1665 cm⁻¹.

 $\underline{trans-3-[(Z)-2-(2-Fluoroethoxyimino)-2-(2-triphenylmethylaminothiazol-4-yl)acetamido]-4-(2H-5-methyltetrazol-2-yl)methyl-1-(1H-tetrazol-5-yl)-2-azetidinone (17g)$

To a solution of 15b (1.0 g, 1.5 mmol) in DMF (10 ml) were added sodium iodide (260 mg, 1.5

VOL. XXXIX NO. 2

Com- pound No.	3,4-Con- figuration	MP (°C, dec)	¹ H NMR (DMSO- d_{θ}) δ (J=Hz)	$\frac{\text{IR }\nu_{\text{C=0}}^{\text{KBr}}}{(\text{cm}^{-1})}$
11a	cis	>230	4.11 (2H, m), 4.36~5.22 (5H, m), 5.58 (1H, m), 6.72 (1H, s), 7.17 (2H, br s), 8.18 (2H, m), 9.38 (1H, d, 8)	1765, 1660
trans Is	omer of 11a	>230	$4.14 \sim 5.56$ (8H, m), 7.15 (1H, s), 9.69 (1H, d, 9), 14.90 (2H, br s)**	1765, 1660
11b	cis	>230	3.87~4.32 (4H, m), 4.47~4.78 (2H, m), 5.00 (1H, m), 5.65 (1H, dd, 5, 9), 6.11 (3H, br s), 6.79 (1H, s), 9.45 (1H, d, 9)	1765, 1660
<i>trans</i> Is	omer of 11b	159~162	4.02~4.40 (4H, m), 4.53~4.80 (2H, m), 5.00~ 5.20 (2H, m), 5.70 (2H, br s), 6.81 (1H, s), 7.00 (1H, br s), 9.40 (1H, d, 8)	1770, 1660
11d	cis	209~212	0.69~2.08 (15H, m), 4.15 (2H, m), 4.53 (1H, m), 4.80~5.25 (2H, m), 5.49 (1H, dd, 6, 9), 6.73 (1H, s), 7.21 (3H, br s), 9.42 (1H, d, 9)	1765, 1660
12a	cis	>230	4.14~5.10 (5H, m), 5.64 (1H, m), 6.74 (1H, s), 7.29 (5H, s), 8.64 (2H, br s), 9.50 (1H, d, 8)	1760, 1655
13a	cis	208~211	4.35~5.05 (4H, m), 5.25 (1H, m), 5.70 (1H, m), 6.83 (1H, s), 7.36 (2H, br s), 9.40 (2H, m)	1775, 1690 (sh), 1670
14a	cis	205~208	1.67~2.46 (6H, m), 4.41~5.13 (2H, m), 5.29 (1H, m), 5.70 (1H, m), 6.80 (1H, s), 9.42 (1H, d, 9), 10.03 (3H, m)	1770, 1720 1660
18e	cis	170~173	3.59~4.36 (7H, m), 4.40~5.23 (3H, m), 5.53 (1H, dd, 6, 9), 6.81 (1H, s), 7.69 (3H, br s), 9.43 (1H, d, 9)	1780, 1670
19e	trans Isomer of 11e	150~152	3.40~4.44 (11H, m), 4.66 (1H, m), 4.83~5.30 (2H, m), 6.64 (1H, s), 9.33 (1H, d, 8)	1770, 1660
19f	trans	187~190	3.79~4.68 (6H, m), 4.80~5.32 (2H, m), 6.67 (1H, s), 7.22 (3H, br s), 7.85~8.27 (2H, m), 8.51 (1H, m), 8.90~9.48 (3H, m)	1770, 1670
19g	trans	>230	2.50 (3H, s), 3.50~4.77 (6H, m), 4.82~5.23 (2H, m), 6.77 (1H, s), 7.17 (3H, br s), 9.30 (1H, d, 8)	1770, 1660
19h	trans	180~182	2.13 (4H, m), 3.15 (3H, s), 3.36~4.75 (11H, m), 5.03 (1H, dd, 3, 9), 6.83 (1H, s), 7.25 (2H, br s), 9.60 (1H, d, 9)	1770, 1660
26j	cis	206~209	3.83~5.15 (7H, m), 5.73 (1H, dd, 6, 8), 6.40~ 7.48 (6H, m), 7.82~8.17 (2H, m), 9.55 (1H, d, 8)	1785, 1720 1650
27k	cis 195~199		4.01~4.86 (6H, m), 5.24 (3H, m), 5.66 (1H, m), 6.52 (2H, br s), 6.96 (1H, s), 7.29 (1H, br s), 9.33 (1H, d, 8)	1770, 1700 1660
28k	cis	223~224	3.90~4.71 (3H, m), 5.18 (2H, s), 5.68 (1H, m), 6.51 (2H, br s), 6.80 (1H, s), 7.14 (2H, br s), 7.35 (5H, s), 9.37 (1H, d, 8)	1780, 1695 1660
29k*	cis	186~190	$3.90 \sim 4.77$ (5H, m), 5.70 (1H, m), 6.53 (2H, br s), 6.82 (1H, s), $8.07 \sim 9.32$ (5H, m)	1775, 1720, 1670, 1630
30k*	cis	193~196	1.64~2.48 (6H, m), 3.86~4.89 (3H, m), 5.77 (1H, m), 6.50 (2H, br s), 6.86 (1H, s), 7.88 (5H, m), 9.26 (1H, d, 9)	1775, 1715, 1665, 1630

Table 5. Spectral and physical properties of N-(tetrazol-5-yl)azetidin-2-ones.

*: TFA salt. **: Measured in a mixture of DMSO-d₆ and CF₃COOD.

mmol) and sodium 5-methyltetrazole (167 mg, 1.5 mmol), and stirred for 15 hours at 60°C. The resulting mixture was treated by a method similar to that described in preparation of **16e**. Yield 0.26 g (24.1%). MP 185~190°C (dec); IR (KBr) $\nu_{c=0}$ 1780, 1670 cm⁻¹; NMR (DMSO- d_{θ}) δ 2.40 (3H, s), 4.10 (2H, m), 4.56~5.69 (6H, m), 6.71 (1H, s), 7.29 (15H, s), 8.70 (1H, br s), 9.32 (1H, d, J= 8.0 Hz).

 $\frac{5-\{trans-3-[(Z)-2-(2-Fluoroethoxyimino)-2-(2-triphenylmethylaminothiazol-4-yl)acetamido]-4-(1-methyl-1-pyrrolidinio)methyl-2-azetidinone}tetrazolide (17h)$

To a solution of **15b** (1.0 g, 1.5 mmol) in DMF (10 ml) were added sodium iodide (260 mg, 1.5 mmol) and 1-methylpyrrolidine (0.78 ml, 7.55 mmol), and stirred for 20 hours at 60°C. The resulting mixture was treated by a method similar to that described in preparation of **16e**. Yield 0.15 g (14.5%). MP 185°C (dec); IR (KBr) $\nu_{c=0}$ 1775, 1660 cm⁻¹; NMR (DMSO- d_6) δ 1.80 ~ 2.24 (4H, m), 2.86 ~ 3.27 (4H, m), 3.34 ~ 4.29 (8H, m), 4.34 ~ 4.65 (2H, m), 4.95 (1H, m), 6.70 (1H, s), 7.24 (15H, s), 8.70 (1H, d, J=8.0 Hz).

cis-3-[2-(2-Aminothiazol-4-yl)-(Z)-2-(2-fluoroethoxyimino)acetamido]-4-substituted Methyl-1-(1H-tetrazol-5-yl)-2-azetidinone (18e and 19e ~ h)

According to the general procedure V-ii), the triphenylmethyl group of 16e and $17e \sim h$ was removed to give 18e and $19e \sim h$ as a white powder. The physical properties of 18e and $19e \sim h$ are summarized in Table 5.

DL-*erythro*-2-Benzyloxycarbonylamino-N-(1-diphenylmethyl-1H-tetrazol-5-yl)-3,4-dihydroxybutyramide (20)

To a solution of 3c (4 g, 7.54 mmol) in THF (45 ml) and H₂O (15 ml) was added in portions NaBH₄ (860 mg, 22.7 mmol) over 30 minutes at $0 \sim 5^{\circ}$ C, and stirred for 5 hours at room temp. The resulting mixture was poured into EtOAc (50 ml) and ice water (50 ml) keeping pH at 2.0 with 2 N HCl. The organic layer was washed successively with H₂O and brine, dried, and evaporated to give a residue, which was triturated with a mixture of EtOAc (3 ml) and Et₂O (9 ml) to afford 20 (2.7 g, 70%) as a white powder. MP 142~144°C; IR (KBr) $\nu_{c=0}$ 1770 cm⁻¹; NMR (DMSO- d_{θ}) δ 3.37~ 4.01 (4H, m), 4.25~4.60 (2H, m), 4.89 (2H, s), 6.27 (1H, d, J=8.0 Hz), 6.89 (1H, s), 7.17 (15H, m), 10.05 (1H, br s).

DL-*erythro*-2-Benzyloxycarbonylamino-*N*-(1-diphenylmethyl-1*H*-tetrazol-5-yl)-3-hydroxy-4-(tetra-hydropyran-2-yl)oxybutyramide (21)

To a solution of **20** (3 g, 5.97 mmol) in CH₃CN (90 ml) were added *p*-toluenesulfonic acid monohydrate (0.15 g, 0.79 mmol), dihydropyran (0.55 ml, 6 mmol) and Molecular Sieves 4A (2 g) at room temp, and stirred for 24 hours at the same temp. The insolubles were filtered off and the filtrate evaporated to give a residue, which was dissolved in EtOAc (50 ml) and H₂O (50 ml). The organic layer was washed with brine, dried, and evaporated to give a residue, which was purified by column chromatography (CHCl₃ - acetone, 5:1) to afford **21** (2.5 g, 71.4%) as an amorphous powder. IR (KBr) $\nu_{C=0}$ 1720, 1705 cm⁻¹; NMR (CDCl₃) δ 1.18~1.98 (6H, m), 3.18~4.22 (5H, m), 4.22~4.68 (3H, m), 5.06 (2H, s), 6.05 (1H, d, J=9.0 Hz), 6.90 (1H, s), 7.28 (15H, s), 10.22 (1H, br s).

cis-3-Benzyloxycarbonylamino-1-(1-diphenylmethyl-1*H*-tetrazol-5-yl)-4-(tetrahydropyran-2-yl)-oxymethyl-2-azetidinone (22, Diastereomer Mixture)

Compound 22 was prepared from 21 by a method similar to that described for the synthesis of 4a. 22A: MP 139~141°C; IR (KBr) $\nu_{c=0}$ 1780, 1725 cm⁻¹; NMR (CDCl₃) δ 1.02~1.67 (6H, m), 3.27~3.71 (2H, m), 3.92 (1H, m), 4.22~4.57 (3H, m), 5.14 (2H, s), 5.47 (1H, dd, J=6.0 Hz, 10.0 Hz), 6.49 (1H, d, J=10.0 Hz), 7.29 (15H, s), 7.76 (1H, s).

Anal Calcd for C₃₁H₃₂N₆O₅: C 65.48, H 5.67, N 14.78. Found: C 65.47, H 5.88, N 14.71.

22B: MP 162~163°C; IR (KBr) $\nu_{c=0}$ 1780, 1725 cm⁻¹; NMR (CDCl₃) δ 1.04~1.61 (6H, m), 2.99~3.24 (2H, m), 3.69 (1H, m), 4.34~4.76 (3H, m), 5.16 (2H, s), 5.46 (1H, dd, J=6.0 Hz, 10.0 Hz), 5.59 (1H, d, J=9.0 Hz), 7.32 (15H, s), 7.89 (1H, s).

Anal Calcd for C₃₁H₃₂N₆O₅: C 65.48, H 5.67, N 14.78. Found: C 65.71, H 5.62, N 14.88.

cis-3-Benzyloxycarbonylamino-1-(1-diphenylmethyl-1*H*-tetrazol-5-yl)-4-hydroxymethyl-2-azetidinone (23i)

To a solution of 22 (1.4 g, 2.46 mmol) in 95% EtOH (20 ml) and THF (5 ml) was added PTS (80 mg, 0.42 mmol), and stirred for 2 hours at 50~60°C. The resulting mixture was evaporated to give a residue, which was dissolved in EtOAc (30 ml) and H₂O (30 ml). The organic layer was washed successively with H₂O and brine, dried, and evaporated to give a residue, which was triturated with Et₂O to afford 23i (1.1 g, 93%). MP 155~158°C; IR (KBr) $\nu_{0=0}$ 1780, 1720 cm⁻¹; NMR (CDCl₃) δ 2.83 (1H, br s), 3.80 (1H, m), 4.05~4.63 (2H, m), 5.10 (2H, s), 5.37 (1H, m), 6.05 (1H, d, J=9.0 Hz), 7.27 (15H, m), 7.59 (1H, s).

Anal Caled for C₂₀H₂₄N₆O₄: C 64.44, H 5.00, N 17.35. Found: C 64.22, H 5.02, N 17.51.

cis-3-Benzyloxycarbonylamino-4-(*p*-fluorobenzoyloxymethyl)-1-(1-diphenylmethyl-1*H*-tetrazol-5yl)-2-azetidinone (**23**j)

To a solution of **23i** (2 g, 4.13 mmol) in CH_2Cl_2 (20 ml) and pyridine (0.67 ml, 8.26 mmol) was added *p*-fluorobenzoyl chloride (0.98 ml, 8.26 mmol) under ice-cooling, and stirred for 3 hours at room temp. The resulting mixture was poured into H₂O, and extracted with CH_2Cl_2 . The extract was washed with H₂O, dried, and evaporated to give a residue, which was triturated with toluene to afford **23j** (2.2 g, 88%) as colorless crystals. MP 156~157°C; IR (KBr) $\nu_{c=0}$ 1810, 1725 cm⁻¹; NMR (CDCl₃) δ 4.37 (1H, m), 4.65 (2H, m), 5.07 (2H, s), 5.40 (1H, dd, J=6.0 Hz, 9.0 Hz), 5.63 (1H, d, J=9.0 Hz), 6.70~7.76 (20H, m).

DL-*erythro*-2-Benzyloxycarbonylamino-4-carbamoyloxy-*N*-(1-diphenylmethyl-1*H*-tetrazol-5-yl)-3hydroxybutyramide (**24**)

To a solution of **20** (4.5 g, 8.95 mmol) in CH₃CN (225 ml) was added dropwise a solution of chlorosulfonyl isocyanate (1.02 ml, 11.7 mmol) in CH₃CN (12 ml) at $-40 \sim -35^{\circ}$ C over 2 hours, and stirred for 30 minutes. A solution of sodium sulfite heptahydrate (4.5 g, 17.9 ml) in H₂O (120 ml) was added to the resulting mixture at -40° C, and allowed to come to room temp. The mixture was saturated with NaCl, and the organic layer was separated. The aqueous layer was extracted with CH₃CN (50 ml). The combined organic layer was washed twice with brine (50 ml). Anhydrous MgSO₄ (50 g) was added to the solution, and stirred for 1 hour at room temp. The insolubles were filtered off and the filtrate evaporated to give a residue, which was triturated with a mixture of EtOAc (10 ml) and Et₂O (10 ml) to afford **24** (3.2 g, 65.4%) as colorless crystals. MP 165~168°C; IR (KBr) $\nu_{c=0}$ 1705, 1670 cm⁻¹; NMR (CDCl₃) δ 3.52~4.64 (5H, m), 4.89 (2H, s), 5.42 (2H, br s), 6.42 (1H, d, J=8.0 Hz), 6.83 (1H, s), 6.92~7.39 (15H, m), 10.41 (1H, br s).

cis-3-Benzyloxycarbonylamino-1-(1-diphenylmethyl-1*H*-tetrazol-5-yl)-4-carbamoyloxymethyl-2azetidinone (**23**k)

Compound 23k was prepared from 24 by a method similar to that described for the synthesis of 4a. MP 189~191°C (dec); IR (KBr) $\nu_{C=0}$ 1800, 1720, 1695 cm⁻¹; NMR (DMSO- d_{θ}) δ 4.01~4.41 (2H, m), 4.68 (1H, m), 5.09 (2H, s), 5.44 (1H, m), 6.42 (2H, br s), 6.89 (1H, s), 7.30 (15H, m), 8.06 (1H, d, J=9.0 Hz).

Anal Calcd for $C_{27}H_{25}N_7O_5 \cdot H_2O$: C 59.44, H 4.99, N 17.97. Found: C 59.21, H 5.03, N 18.20.

cis-3-Amino-4-substituted Methyl-1-(1H-tetrazol-5-yl)-2-azetidinone (25j and 25k)

Compounds (25j, 25k) were prepared from 23j and 23k by a method similar to that described for the synthesis of 6. The physical properties of 25j and 25k are summarized in Table 4.

cis-3-[2-(2-Aminothiazol-4-yl)-(Z)-2-(O-substituted Oxyimino)acetamido]-4-substituted Methyl-1-(1H-tetrazol-5-yl)-2-azetidinones (26j ~ 30k)

Compounds $(26j \sim 30k)$ were prepared from 25j and 25k by according to the general procedure V. The physical properties of $26j \sim 30k$ are summarized in Table 5.

Methyl 4-Fluoro-2-methoxyimino-3-oxobutyrate (32)

A mixture of methyl 4-bromo-2-methoxyimino-3-oxobutyrate (31) (50 g, 0.21 mmol), 18-crown-6 (5 g, 18.9 mmol) and freshly dried potassium fluoride (25 g, 0.43 mol) in anhydrous CH₃CN (750 ml) was heated at reflux for 10 hours. The insolubles were filtered off and the filtrate evaporated to give a residue, which was dissolved in toluene (300 ml) and H₂O (300 ml). The organic layer was washed with H₂O, dried, and evaporated to give a residue, which was purified by column chromatography (*n*-hexane - EtOAc, 20: 1) to afford 32 (10 g, 26.9%) as a colorless oil. IR (neat) $\nu_{c=0}$ 1740, 1725 cm⁻¹; NMR (CDCl₃) δ 3.84 (3H, s), 4.10 (3H, s), 4.96 (1H, s), 5.73 (1H, s).

Methyl 4-Fluoro-3-hydroxy-2-methoxyiminobutyrate (33)

To a solution of **32** (20 g, 0.17 mol) in MeOH (200 ml) was added portionwise NaBH₄ (1.18 g, 31.2 mmol) over 30 minutes at $0 \sim 5^{\circ}$ C, and stirred for 1 hour at the same temp. The resulting mixture was concentrated to one third volume under reduced pressure, the concentrate was extracted with EtOAc. The extract was washed successively with H₂O and brine, dried, and evaporated to give a residue, which was purified by column chromatography (toluene - EtOAc, 20: 1) to afford **33** (18.5 g, 91.6%) as a colorless oil. IR (neat) $\nu_{c=0}$ 1740 cm⁻¹; NMR (CDCl₃) δ 3.63 (1H, m), 3.83 (3H, s), 3.91 (3H, s), 4.03 ~ 5.01 (3H, m).

Methyl 2-Benzyloxycarbonylamino-4-fluoro-3-hydroxybutyrate (34)

Compound 33 (18 g, 0.1 mol) was hydrogenated in MeOH (200 ml) for 8 hours over 5% Pd-C (6 g) at room temp under a hydrogen atmosphere. The catalyst was filtered off and the filtrate evaporated to give a residue, which was dissolved in CH₂Cl₂ (200 ml) and cooled to -20° C. After addition of benzyl chloroformate (15.8 ml, 0.11 mol), pyridine (8.9 ml, 0.11 mol) was added dropwise to the solution over 10 minutes at $-20 \sim -10^{\circ}$ C, and stirred for 1 hour at $0 \sim 5^{\circ}$ C, in addition, 1 hour at room temp. The reaction mixture was poured into H₂O. The organic layer was washed successively with H₂O and brine, dried, and evaporated to give a residue, which was purified by column chromatography (toluene - EtOAc, 20: 1) to afford 34 (14 g, 49%) as colorless crystals. MP 90~95°C; IR (KBr) $\nu_{c=0}$ 1770, 1675 cm⁻¹; NMR (CDCl₃) δ 3.28 (1H, m), 3.76 (3H, s), 4.08 (1H, m), 4.36~4.65 (2H, m), 4.80 (1H, m), 5.10 (2H, s), 5.72 (1H, d, J=8.0 Hz), 7.32 (5H, s).

Anal Calcd C₁₃H₁₆FNO₅: C 54.72, H 5.66, N 4.91. Found: C 54.89, H 5.65, N 4.80.

Methyl 2-Benzyloxycarbonylamino-4-chloro-3-hydroxybutyrate

The title compound was prepared from methyl 4-chloro-3-hydroxy-2-methoxyiminobutyrate by a method similar to that described above. Yield 93%. MP 110~112°C; IR (KBr) $\nu_{c=0}$ 1745, 1675 cm⁻¹; NMR (CDCl₃) δ 3.59 (2H, d, J=6.0 Hz), 3.61 (3H, s), 4.10~4.40 (2H, m), 4.56 (1H, m), 4.84~ 5.07 (3H, m), 6.14 (1H, d, J=9.0 Hz), 7.24 (5H, s).

 Anal Calcd C₁₃H₁₆ClNO₅:
 C 51.74, H 5.36, N 4.64.

 Found:
 C 51.59, H 5.21, N 4.87.

DL-erythro-2-Benzyloxycarbonylamino-4-fluoro-3-hydroxybutyric Acid (1a) and Its threo Isomer

To a solution of 34 (9.8 g, 34.4 mmol) in acetone (50 ml) and H_2O (15 ml) was added dropwise a solution of 1 N NaOH (34.5 ml) over 30 minutes at $10 \sim 15^{\circ}C$, and stirred for 30 minutes at the same temp. The resulting mixture was concentrated to a half volume, and diluted with H_2O (50 ml) and washed with Et_2O . The solution was adjusted to pH 2.0 with 6 N HCl, and extracted with EtOAc. The extract was washed with brine, dried, and evaporated to give a residue, which was triturated with benzene (50 ml) to afford 1a (4.7 g, 50.5%) as colorless crystals. On the other hand, the filtrate was evaporated to give a residue, which was triturated with toluene (30 ml) to afford *threo* isomer of 1a (3.1 g, 33.3%).

VOL. XXXIX NO. 2

1a: MP 109~111°C; IR (KBr) $\nu_{c=0}$ 1720 (sh), 1690 cm⁻¹; NMR (DMSO- d_{θ}) δ 4.32~4.82 (4H, m), 4.80 (1H, m), 5.07 (2H, s), 6.99 (1H, d, J=8.0 Hz), 7.34 (5H, s). The *threo* isomer of **1a**: MP 80~82°C; IR (KBr) $\nu_{c=0}$ 1720, 1690 cm⁻¹; NMR (DMSO- d_{θ}) δ 3.85~4.90 (5H, m), 5.07 (2H, s), 7.00 (1H, d, J=8.0 Hz), 7.35 (5H, s).

DL-2-Benzyloxycarbonylamino-4-chloro-3-hyroxybutyric Acid

The title compound was prepared from methyl 2-benzyloxycarbonylamino-4-chloro-3-hydroxybutyrate by a method similar to that described above. Yield 50%. An amorphous powder; IR (KBr) $\nu_{c=0}$ 1710 cm⁻¹; NMR (CDCl₃) δ 3.45 (2H, d, J=6.0 Hz), 4.12~4.65 (3H, m), 5.06 (2H, s), 6.05 (1H, d, J=8.0 Hz), 7.00 (1H, br s), 7.25 (5H, s).

DL-Ethyl 2-Benzyloxycarbonylamino-3-hydroxydecanoate (36)

To a solution of diisopropylamine (35 ml, 0.25 mol) and absolute THF (600 ml) was added dropwise *n*-butyllithium (124 ml, 1.5 N hexane solution) at -70° C, and stirred for 30 minutes at the same temp. A solution of ethyl *N*-carboxybenzylglycinate (35) (20 g, 84 mmol) and THF (50 ml) was added dropwise to the resulting mixture at -78° C. After being stirred for 1 hour at $-70^{\circ} - 60^{\circ}$ C, octyl aldehyde (14.5 ml, 93 mmol) was added dropwise to the solution at -78° C, and stirred for 30 minutes at the same temp. After addition of AcOH (11 ml, 0.19 mol), the reaction mixture was poured into EtOAc (200 ml) and H₂O (300 ml). The organic layer was washed with brine, dried, and evaporated to give a residue, which was purified by column chromatography (toluene - EtOAc, 20: 1) to afford 36 (24 g, 78%) as a colorless oil. IR (neat) $\nu_{c=0}$ 1725 cm⁻¹; NMR (CDCl₃) δ 0.73~1.56 (15H, m), 3.83~4.47 (5H, m), 5.09 (2H, s), 5.79 (1H, d, J=8.0 Hz), 7.30 (5H, s).

DL-erythro-Benzyloxycarbonylamino-3-hydroxydecanoic Acid (1d)

The title compound was prepared from 36 by a method similar to that described for the synthesis of 1a. Yield 84%. An amorphous powder. IR (KBr) $\nu_{c=0}$ 1730, 1690 cm⁻¹; NMR (DMSO- d_{θ}) δ 0.75 ~ 1.52 (15H, m), 3.63 ~ 4.20 (3H, m), 5.08 (2H, s), 6.85 (1H, d, J=9.0 Hz), 7.35 (5H, s).

Acknowledgment

The authors wish to thank Mr. T. YASUDA and co-workers for providing the biological data and Mr. T. MAEDA and co-workers for microanalyses and spectral measurements.

References

- YOSHIDA, C.; K. TANAKA, Y. TODO, R. HATTORI, Y. FUKUOKA, M. KOMATSU & I. SAIKAWA: Studies on monocyclic β-lactam antibiotics. IV. Synthesis and antibacterial activity of (3*S*,4*R*)-3-[2-(2-aminothiazol-4-yl)-(*Z*)-2-(*O*-substituted oxyimino)acetamido]-4-methyl-1-(1*H*-tetrazol-5-yl)-2-azetidinones. J. Antibiotics 39: 90~100, 1986
- MITSUNOBU, O.; M. WADA & T. SANO: Stereospecific and stereoselective reaction. 1. Preparation of amines from alcohols. J. Am. Chem. Soc. 94: 679~680, 1979
- OCHIAI, M.; O. AKI, A. MORIMOTO, T. OKADA & T. MATSUSHITA: New cephalosporin derivatives with high antibacterial activities. Chem. Pharm. Bull. 25: 3115~3117, 1977
- SHANZER, A.; L. SOMEKH & D. BUTINA: Stereospecific synthesis of α-amino-β-hydroxy acids. J. Org. Chem. 44: 3967 ~ 3969, 1979
- ΟΚΑΙ, Η.; Ν. ΙΜΑΜURA & N. ΙΖUΜΙΥΑ: Resolution of amino acids. VIII. The preparation of the four optical isomers of β-hydroxyaspartic acid. Bull. Chem. Soc. Jpn. 40: 2154~2159, 1967
- MORI, K. & H. IWASAWA: Stereoselective synthesis of optically active forms of δ-multistraiatin, the attractant for european populations of the smaller european elm bark beetle. Tetrahedron 36: 87~90, 1980
- MATTINGLY, P. G.; M. J. MILLER, R. D. G. COOPER & B. W. DAUGHERTY: Chiral syntheses of protected 3-amino-4-(alkoxycarbonyl)-2-azetidinones from β-hydroxyaspartic acid. J. Org. Chem. 48: 3556~3559, 1983
- SYKES, R. B.; D. P. BONNER, K. BUSH & N. H. GEORGOPAPADAKOU: Azthreonam (SQ 26,776), a synthetic monobactam specifically active agent aerobic Gram-negative bacteria. Antimicrob. Agents Chemother. 21: 85~92, 1982